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We investigate the energy spectrum of fermionized bosonic atoms, which behave very much like spinless
noninteracting fermions, in optical lattices by means of the perturbation expansion and the retarded
Green’s function method. The results show that the energy spectrum splits into two energy bands with
single-occupation; the fermionized bosonic atom occupies nonvanishing energy state and left hole has a
vanishing energy at any given momentum, and the system is in Mott-insulating state with a energy gap.
Using the characteristic of energy spectra we obtained a criterion with which one can judge whether the

Tonks-Girardeau (TG) gas is achieved or not.
OCIS codes: 020.0020, 300.6170, 270.0270.

In the recent years, the strongly interacting system
in cold atomic gases has been attracted great at-
tention due to the developments in low-dimensional
trapping' 4, loading of optical lattices with ultracold
atoms(® 1, and external modification of the inter-
particle interactions!'>'3]. The observation of the su-
perfluid to Mott-insulator transition of ultracold bosonic
gases in optical lattices has demonstrated the large de-
gree of tunability offered by these techniques. Compared
with three-dimensional (3D) system, one-dimensional
(1D) system has different significances. Especially, in
1D gas the more important the inter-particle interac-
tions become, the more dilute the gas is. Particularly,
at sufficiently low density or a large s-wave scattering
length a, the bosonic gas resembles a gas of classical
hard spheres or spinless non-interacting fermions, the sys-
tem enters Tonks-Girardeau (TG) region'*'?!, In exper-
iment, the collective excitation spectrum of 1D bosonic
gas was measured!'® and 1D superfluid to Mott-insulator
transition was observed by adding an additional 1D opti-
cal lattice along the axis!7. These experiments spurred
the realization of 1D TG gases last year'®1°]. Realiz-
ingf TG gas in optical lattices is a novel way. Paredes et
al.1'% first achieved the TG regime experimentally. They
measured the momentum distribution and found that it
agrees closely with the theoretical prediction. TG gas
is one of the main focus areas of experimental and the-
oretical investigation recently. A hydrodynamic formal-
ism was shown to reproduce the stationary properties of
the TG gas?%, the hydrodynamic method has been ex-
tended to the case of finite interactions, by employing
the Lieb and Liniger (LL) model?!! and local density
approximation(?]. Pedri et al. analyzed the properties
of TG gases in harmonic trap!?3=25. Very recently, 1D
TG gases in optical lattices have been investigated with
quantum Monte carlo (QMC), the model is described by
Bose-Hubbard Hamiltonian!?%.

Over the past year, the Hubbard model has become
more important, because it plays a crucial role in some
topics in condensed matter physics, including 1D bosonic
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gases in optical lattices?6=28]. Reference [26] has shown

that Bose-Hubbard Hamiltonian can describe TG gas in
Ref. [18]. The energy spectrum is important for under-
standing the physics properties of TG gas loading in lat-
tices. To the best of our knowledge, there is no analytic
results for the energy spectrum of 1D TG gas in optical
lattices. In this paper we will concentrate on analytic
results for the energy spectrum. We consider 1D TG gas
in optical lattices, which is described by Bose-Hubbard
model, find the effective Hamiltonian of fermionized bo-
son using perturbation expansion and Jordan-Wigner
transform, and achieve the energy spectrum by means
of double time retarded Green’s function (GF) method.

Let’s consider ultracold hard core bosonic gas loaded
in the optical lattices at zero temperature, which is de-
scribed in the Bose Hubbard model. In one dimension,
the Bose-Hubbard Hamiltonian takes the form!®!

J —rits U ititi g
Hy=-3 Z[b:rbm +Hel+ EZbIbIbibi, (1)

K3 K3

where the first term describes the hopping energy of the
bosonic atom in optical lattice, J is the hopping matrix
elements between nearest neighbor sites ¢ and j; the sec-
ond term gives the interactions between atoms on-site, U

gives interaction strength. The bosonic operators ?)I (l;l)
create (annihilate) one bosonic atom at the ith site with

canonical commutation relations [b;, E;r] = dij.

Our interest is in the strongly interacting (U > J or
TG) regime, in which two bosonic atoms cannot occupy
the same lattice site. We can consider the bosons as the
free-spin fermions in the TG regimel'¥l ie., the state
with site occupancy equal to or less than 1 (n; < 1) will
be available, because on-site interaction vanishes. It is
well known that for sufficiently large U the bare energy
band splits into the sub-bands. To describe the motion of
bosonic atom in the TG regime, Hg is split into two com-
plementary subspaces: Hg = Hp ® Hq, where projection
operator P projects Hp onto the subspace Hp of states
with the constraint (n; < 1 for all ith sites); @ =1— P

projects onto the complementary subspace Hg. The pro-
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jection operators P and @ satisfy the relations: P = P,

=P, Q =Q", and Q> = Q. Because the subspaces
Hp and Hq are orthogonal, we also have QP = PQ = 0.
Thus we can find the effective Hamiltonian within the
subspace Hp using perturbation expansion[2?]

Hee = PHgP — PHBQmQHBP + - (2)

Our treatment of the effective Hamiltonian nearly traces
Cazalilla’s calculations(®®!, we will skip all the details and
merely discuss some salient points of the calculations.
One can remove the projection operator P if the bo-
son operators are represented in terms of Pauli matrices
Oip = (i):r-l-i)l), Oy = Z(ZA)I —Bi), and o;, = 1—2?)1?)1 Then
using Jordan-Wigner transform(30 b, = exp(inXi<i¢)
and n; = EIBZ = é;féi, one can obtain the fermionized
effective Hamiltonian

J 4
Hepr = —3 Z <CI+1Ci -

(3

J N
Uc;[+1nici—1 + H.C.)

J3
_ﬁ (ni+1 + ni,l)ni +0 (F) ) (3)

where é;r(él) are the fernionized boson creating (annihi-
lating) operators. We have, as usual for Bose operators,

[6i,¢;] =0, [Ci,n;] = ¢idij, (4)
but introduce the fermionized boson constraint by limit-
ing the eigenvalues from n; to 0 and 1, i.e., ¢ = 0, and
n? = n;. Together with Eq. (4), the basic commutation

(2
relation is implied as(!]

[, é;r] =(1

Actually, Eq. (3) effectively represents the free-spin
fermionized boson Hamiltonian. As following, we will
calculate the energy spectrum and momentum distribu-
tion of TG gas in optical lattices in terms of the retarded
Green’s function and effective Hamiltonian Hege. The
double-time retarded single particle Green’s function at
zero temperature is defined by

Gy (1) = =i0(6)({e:(1), eH(0)}) = (@ (1); e (0))),  (6)

where the function 6(¢ — t') is the usual step function;
the curly brackets {- - - } denote the anti-commutation re-
lation; (---) denotes the ground-state expectation value;
the operators are expressed in the Heisenberg representa-
tion. Using the Fourier transform, the equation of motion
for the Green’s function becomes

G(w) = ({1 + (([&, Hetel, €)).o- (7)

The subscript w also indicates the Fourier transform.
This equation can be solved by applying a suitable de-
coupling procedure in order to simplify the higher-order
Green’s function which appears on the right side. Sub-
stituting the effective Hamiltonian Hegr (Eq. (3) into Eq.

(7), one has

<w + Jﬁ’*ﬂ) Gij(w) =1- %[Gm,j(w) +Gio1,j(W)]

J? J?
F2olGis @) + i) + 50T, ()
where
D(w) = (el titi1 + 1, €], (9)
where 7 = (n;). We have used random phase ap-

proach decoupling ((é! z+lcl+1ci7 ;))w — ﬁ((éz,é;r))w and

(e imaa, €)= (8, )
of motion to I'(w), one has

Applying the equation

<w + %2”) QNw) = J—2ﬁ(1 —1)Gij (w). (10)

For Eq. (10) we also used the random phase approach
decoupling approximation and translation invariance:

(€l éim1) — (el eg1) = 0, (ele_1) — (¢]_,&:) = 0, and
(é;f+26i,1> - (é;f_léiH) = 0. Transforming Green’s func-
tions from coordinate to momentum space, we have

w+ %81 + ﬁﬁ(Q - 52)} Gk,w)=1+ ;—Uf(k,w),
(11)
<w + %ﬁ) I'(k,w) = j—Uﬁ(l —7)G(k,w), (12)

where €1 = 2 cos(ka), €2 = 2 cos(2ka), a is optical lattice
constant linking nearest neighbor sites. From Egs. (11)

and (12), we obtain
Glhw) = —IED (13)
(w—wi)(w—w-)
where r = J/U. The energy spectra are
J
wy = Z[( — 4fr + frep) + B, (14)
where B = (47r® — 402r® + &2 — 2are 5 4+ r2e3)!/2.
According to Eq. (14), we obtaln the energy gap is
J
Aw=wy —w_ = §B. (15)

From Eq. (13), we have Green function’s standard for-
mula

G(k,OJ) = + ) (16)

where Ay = 1 (1+ 2=2"<2). We notice that

J
Wi +w_ = 5(—51 — 4rn + rRes), (17)

i.e., the two bands are specularly symmetric with respect
tow= (- —4rin+riez) and A, + A = 1. From w4

1
and A4+ one knows that both the Hubbard bands and
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Fig. 1. The energy spectrum of fermionized Bose gas in opti-
cal lattices as a function of the momentum k, where 7 = 0.5
(half-filling), v = 52.28, and U = 52.28 J.
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Fig. 2. The energy gap of fermionized Bose gas in optical
lattices as a function of the momentum k, where the average
occupancy factor is n = 0.5.

their weights depend on 7, i.e., the average occupation
of the fermionized bosons per site.

Figure 1 shows the energy spectrum of fermionized
bosons in optical lattices, where i = 0.5 (half-filling),
v = 52.28, the parameter is defined as y = U/.J. The en-
ergy spectrum is split into two bands, and there is gap Aw
between two spectral bands. The corresponding energy
gap is given in Fig. 2. The existence of the energy gap in-
dicates that the system is in Mott-insulating state when
bosonic gas enters TG region. One knows that Aw — 0
at k = 1.07a"!, 4.71a™! (see Fig. 2). It does not imply
that the system enters the superfluid state, because the
system enters TG region as the coherence length of the
system, which is the de Broglie wavelength, approaches
inter-particle spacing, the single-particle wave functions
become spatially distinct!*?]. In the asymptotic TG gas,
the coherence length equals to inter-particle space, the
single particle wave functions are completely distinct and
separate. Therefore the superfluid state cannot occur in
the TG region. One can obtain TG region by either in-
creasing the interaction between bosons or decreasing 1D
density of bosons (increasing inter-particle spacing).

From Fig. 1, we have the negative ground energy, be-
cause the effective Hamiltonian (Eq. (3)) has a negative
nearest neighboring hopping energy (—J) and the near-
est neighboring attractive interaction due to perturba-
tive expansion. Given any momentum k value, the en-

ergy approaches zero for one of two energy bands. This
implies that single-occupation fermionized boson occu-
pies lower nonvanishing energy band at smaller momen-
tum state, and left empty-occupation hole has vanish-
ing energy. For fermionized Bose gas in optical lat-
tices, empty-occupation hole is static. These results
are different from those of non-fermionized Bose gas in
optical lattice. For single-component Bose gas, there
are a constant lower energy band and an upper energy
band32l; for two component Bose gas, there are a con-
stant lower energy band and two identical upper energy
bands for each component3. Comparing fermionized
bosons with soft-core bosons in optical lattices, the en-
ergy bands of the fermionized bosons are lower than those
of the soft-core bosons. Lowering energy is the charac-
teristic of the fermionization, which was demonstrated
experimentally'?]. Comparing with the result calculated
in terms of Bogoliubov approach®¥, the ground state en-
ergy spectrum is in good agreement except the difference
of a factor 2. This difference may be caused by the ap-
proximation itself. Therefore, one can predict whether a
system enters the TG regime or not from the character-
istic of the energy spectra in experiment.

In conclusion, using the fermionization technique of bo-
son and double-time retarded Green’s function method,
we have found the analytic results of the energy spec-
trum in 1D fermionized Bose gas on presence of optical
lattices. The energy spectrum splits two energy bands
and the system is in Mott-insulator state. The charac-
teristic of energy bands shows that the fermionized boson
occupies the nonvanishing energy state, and left hole has
vanishing energy at given momentum k. Our analytic
results of fermionized bosonic energy spectra provides a
criterion with which one can judge whether the system
enters the TG region or not in experiment.
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